Impact of gas cluster ion and accelerated neutral atom beam surface treatments on the laser-induced damage threshold of ceramic Yb:YAG

MARIASTEFANIA DE VIDO,1, 2,* MICHAEL J. WALSH,3 SEAN KIRKPATRICK,3 RICHARD SVRLUGA,3 KLAUS ERTEL,1 P. JONATHAN PHILLIPS,1 PAUL D. MASON,1 SAUMMYABRATA BANERJEE,1 JODIE M. SMITH,1 THOMAS J. BUTCHER,1 CHRIS EDWARDS,1 CRISTINA HERNANDEZ-GOMEZ,1 AND JOHN L. COLLIER1

1STFC Rutherford Appleton Laboratory, Central Laser Facility, Chilton, Didcot, OX11 0QX, UK
2Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
3Exogenesis Corporation, 20 Fortune Drive, Billerica, MA 01821, USA
*mariastefania.de-vido@stfc.ac.uk

Abstract: We describe the application of the gas cluster ion beam (GCIB) and of the accelerated neutral atom beam (ANAB) surface treatments to ceramic Yb:YAG. We demonstrate that these techniques allow accurate control of ceramic Yb:YAG surface characteristics and constitute an alternative to conventional surface finishing techniques. In this study, we analyse the impact of angstrom level polishing and surface nano-texturing on laser induced damage threshold (LIDT) in the nanosecond pulsed regime of uncoated and antireflective coated ceramic Yb:YAG samples. We show that both techniques allow meeting the requirements on resilience to laser irradiation at fluence levels characterising high-energy laser systems. Moreover, we show that surface nano-texturing improves the LIDT of coated samples, possibly through an improvement in adherence of coatings to ceramic Yb:YAG substrates.

© 2017 Optical Society of America

OCIS codes: (160.4670) Optical materials; (160.5690) Rare-earth-doped materials; (220.4241) Nanostructure fabrication; (220.5450) Polishing; (350.1820) Damage; (350.3390) Laser materials processing.

References and links


